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Abstract

This paper appliesthe Bates (RFS, 2006) methodol ogy to the problem of estimating
and filtering time-changed L évy processes, using daily data on stock market excess
returns over 1926-2006. In contrast to density-based filtration approaches, the
methodol ogy recursively updatesthe associated conditional characteristic functions
of the latent variables. The paper examines how well time-changed Lévy
specifications capture stochastic volatility, the“leverage’ effect, and the substantial
outliersoccasionally observed in stock market returns. The paper aso findsthat the
autocorrelation of stock market excess returns varies substantially over time,
necessitating an additional latent variable when analyzing historical data on stock
market returns.
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How should we model therisk of stock market crashes? Answering thisquestioniscomplicated by
two features of stock market returns: the fact that conditional volatility evolves over time, and the
fat-tailed nature of daily stock market returns. Each issue affects the other. What we identify as
outliers depends upon that day’ s assessment of conditional volatility. Conversely, our estimates of
current volatility from past returns can be disproportionately affected by outliers such as the 1987
crash. Instandard GARCH specifications, for instance, a10% daily change in the stock market has

100 times the impact on conditional variance revisions of a more typical 1% move.

This paper explores whether recently proposed continuous-time specifications of time-
changed Lévy processes are auseful way to capture the twin properties of stochastic volatility and
fat tails. The use of Lévy processes to capture outliers dates back at least to Mandelbrot’ s (1963)
use of the stable Paretian distribution, and there have been many others proposed; e.g., Merton’s
(1976) jump-diffusion, Madan and Seneta’ s (1990) variance gamma; Eberlein, Keller and Prause’s
(1998) hyperbolic Lévy; and Carr, Madan, Geman and Y or’ s(2002) CGMY process. Asall of these
distributions assume identical and independently distributed returns, however, they are unable to

capture stochastic volatility.

Morerecently, Carr, Geman, Madan and Y or (2003) and Carr and Wu (2004) have proposed
combining Lévy processes with a subordinated time process. The idea of randomizing time dates
back to at least to Clark (1973). Itsappeal in conjunctionwith L évy processesreflectstheincreasing
focus in finance — especially in option pricing — on representing probability distributions by their
associated characteristic functions. Lévy processes havelog characteristic functionsthat are linear
intime. If thetime randomization depends on underlying variablesthat have an analytic conditional
characteristic function, the resulting conditional characteristic function of time-changed Lévy
processesisalsoanalytic. Conditional probability densities, distributions, and option pricescanthen
be numerically computed by Fourier inversion of simplefunctional transformsof thischaracteristic

function.
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Thus far, empirical research on the relevance of time-changed Lévy processes for stock
market returns has largely been limited to the special cases of time-changed versions of Brownian
motion and Merton’s (1976) jump-diffusion. Furthermore, there has been virtually no estimation
of newly proposed time-changed L évy processes solely from time seriesdata.' Papers such as Carr
et al (2003) and Carr and Wu (2004) have relied on option pricing evidence to provide empirical
support for their approach, rather than providing direct timeseriesevidence. Therelianceon options
datais understandable. Since the state variables driving the time randomization are not directly
observable, time-changed Lévy processes are hidden Markov models — a challenging problem in
time serieseconometrics. Using option prices potentially identifiesrealizations of those latent state
variables (under the assumption of correct model specification), converting the estimation problem
into the substantially moretractable problem of estimating state space model swith observabl e state

variables.

This paper provides direct time series estimates of some proposed time-changed Lévy
processes, using the Bates (2006) approximate maximum likelihood (AML) methodology. AML is
a filtration methodology that recursively updates conditional characteristic functions of latent
variables over time given observed data. Filtered estimates of the latent variables are directly
provided as aby-product, given the close link between moments and characteristic functions. The
primary focus of the paper’ s estimatesis on the time-changed CGMY process, which nests various
other processes as specia cases. The approach will also be compared to the time-changed jump-
diffusions previously estimated in Bates (2006).

The central issue in the study is the one stated at the beginning: what best describes the
distribution of extreme stock market movements? Such events are perforce relatively rare. For
instance, the -20% stock market crash of October 19, 1987 was the only daily stock market
movement in the post-World War |1 erato exceed 10% in magnitude. By contrast, therewere seven
such movements over 1929-32. Consequently, | use an extended data series of excess value-

weighted stock market returns over 1926-2006, to increase the number of observed outliers.

Li, Wells and Yu (2006) use MCMC methods to estimate some models in which Lévy
shocks are added to various stochastic volatility models. However, the additional L évy shocks are
i.i.d., rather than time-changed.
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A drawback of using an extended data set is the possibility that the data generating process
may not be stable over time. Indeed, this paper identifiesone such instability, in the autocorrelation
of daily stock market returns. The instability is addressed directly, by treating the autocorrelation
asanother latent state variableto be estimated from observed stock market returns. Autocorrelation
estimates arefound to be nonstationary, and peaked at the extraordinarily high level of 35%in 1971,

before trending downwards to the near-zero values observed since 2002.

Overall, the time-changed CGMY processis found to be a parsimonious alternative to the
Bates (2006) approach of using finite-activity stochastic-intensity jumps drawn from a mixture of
normals, although the fits of the two approaches are not dramatically different. Interestingly, one
cannot reject the hypothesis that stock market crash risk is adequately captured by atime-changed
version of the Carr-Wu (2003) log-stable process. That model’s implications for upside risk,
however, are strongly rejected, with the model severely underpredicting the frequency of large

positive outliers.

Section | of the paper progressively builds up the time series model used in estimation.
Section 1.1 discusses basic Lévy processes and describes the processes considered in this paper.
Section 1.2 discusses time changes, the equivalence with stochastic volatility, and further
modifications of the data generating process to capture leverage effects and time-varying
autocorrelations. Section 1.3 describes how the model is estimated, using the Bates (2006) AML
estimation methodology for hidden Markov models.

Section Il describes the data on excess stock market returns over 1926-2006, and presents
the estimates of parameters and filtered estimates of latent autocorrelations and volatility. Section

[l concludes.



|. Time-changed L évy processes

|.1 L évy processes

A Lévy process L(r) isaninfinitely divisible stochastic process; i.e., one that has independent and
identically distributedincrementsover arbitrary timeintervals. TheL évy processesmost commonly
used in finance have been Brownian motion and the jump-diffusion process of Merton (1976), but
there are many others. All Lévy processes other than Brownian motions can be viewed as
extensions of jump processes. These processes are characterized by their Lévy density &(x), which
gives the intensity (or arrival rate) of jumps of size x. Alternatively and equivalently, Lévy

processes can be described by their generalized Fourier transform

F(u) = Ee"® = exp[tf,(u)], u € D, C (1)

where u is a complex-valued element of the set D, for which (1) is well-defined. If @ isred,
F(i®)isthe characteristic function of L(¥), while ¢f,(®) isthe cumulant generating function of
L(r). Its linearity in time follows from the fact that Lévy processes have i.i.d. increments.
Following Wu (2006), the function £, () will be called the cumulant exponent of L(7) >

The Lévy-Khintchine formula gives the mapping between jump intensities k(x) and the
cumulant exponent for arbitrary u € D, . Lévy processesin finance aretypically specified for the
log asset price, and then exponentiated: S(f) = exp[L(#)]. For such specifications, itisconvenient

to write the L évy-Khintchine formulain the form

fal) = up + [ e -1 -u(e® - DIk, @

where p = £, (1) isthe continuously-compounded expected return on the asset:
ES(t) = Ee™® = Ja - opt 3

Intuitively, Lévy processes can be thought of as a drift term plus an infinite sum of independent

point processes, each an exponential martingale of the form

dinL_= -(e* - 1)k(x)dt + xdN_, 4)

*Carretal (2003) call £, (i®@) the“unittimelog characteristicfunction.” Bertoin (1996) uses
the characteristic exponent, which takes the form ¥(®) = -f,, (i®).
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where N_ is a Poisson counter with intensity k(x) that counts the number of jumps of fixed size x.
The log characteristic function of a sum of independent point processes is the sum of the log

characteristic functions of the point processes, yielding equation (2).

Asdiscussed in Carr et a (2002), Lévy processes are finite-activity if fk(x)dx < o, and
infinite-activity otherwise. Finite-activity jumpsimply thereisanon-zero probability that nojumps
will be observed within a given time interval. Lévy processes are finite-variation if
f x| k(x)dx < o, and infinite-variation otherwise. An infinite-variation process has sample paths
of infinite length — a property also of Brownian motion. All Lévy processes must have finite
guadratic variation fxzk(x)dx, in order to be well-behaved. A priori, al financial prices must be
finite-activity processes, since price changes reflect a finite (but large) number of market
transactions. However, finite-activity processes can be well approximated by infinite-activity
processes, and vice versa; e.g., the Cox, Ross and Rubinstein (1979) finite-activity binomial
approximation to Brownian motion. Activity and variation will therefore be treated as empirical
specification issues concerned with identifying which functional form i(x) best fits daily stock

market returns.

| will consider two particular underlying Lévy processes for log asset prices. Thefirst is

Merton (1976)’ scombination of aBrownian motion plusfinite-activity normally distributed jumps:

dInS, = pdt + (6dW, - 20%dt) + (ydN, - Akdr) (5)

where W, isaWiener process,
N, is aPoisson counter with intensity A,
Y ~ N(y, 8% isthe normally distributed jump conditional upon ajump occurring, and
k=e?*%® _ 1 isthe expected percentage jump size conditional upon ajump.

The associated intensity of jumps of sizex is

_ A _x-y)
) Y212 P 262 (©)

while the cumulant exponent takes the form



Siterion@ = (4 -AR)u + %o*w? -u) + )»(ev" v vetu? 1.

The approach can be generalized to allow alternate distributions for y—in particular, a mixture of

normals;

2 A (x-v,)*
k(x) = — exp|- — |-
%) =3 e 7

[

Second, | will consider the generalized CGMY process of Carr, Madan, Geman and Y or
(2003), which has ajump intensity of the form

C,e G- x| for x < 0
k(x) = (8)

C,e™MH x| for x > 0

where C,, Cp, G, M>0and Yp, Y < 2. Theassociated cumulant exponent is

G- - Ggh M+ - MY
Foo@) = (- + Pw, G0 Gy M) - M2
Y (Y,-1)G™ Y,(Y,-DHM”
where w isamean-normaizing constant determined by f,, (1) = |;
V isthe variance per unit time, and
w, isthefraction of variance attributable to the downward-jump component.
The corresponding intensity parametersC,, C, in(8) are
w,V a-w)v
C, = , G, = (10)

re-v)Gm?> T@-Y)M?”

where I'(z) isthe gammafunction.
Asdiscussed in Carr et a (2002), theY parameters are key in controlling jump activity near

0, inadditionto their influence over tail events. The processhasfiniteactivity for Y,Y, < 0, finite

variation for Y,Y, < 1, but infinite activity or variation if min(Y,, Y,) isgreater or equal to O or
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1, respectively. The model conveniently nests many models considered elsewhere. For instance,
Y = -1 includes the finite-activity double exponential jump model of Kou (2002), while
Y, =Y, =0 includes the variance gamma model of Madan and Seneta (1990). As Y, and Y,
approach 2, the CGMY process converges to a diffusion, and the cumulant exponent converges to

the corresponding quadratic form

Feanw @ = (0 -%V)u + V¥aVu?. (11)

AsG and M approach O (for arbitrary Y, Y,), the Lévy density (8) approachestheinfinite-
variance log stable process advocated by Mandelbrot (1963), with a “power law” property for
asymptotic tail probabilities. The log-stable special case proposed by Carr and Wu (2003) is the
limiting casewith only negativejumps(w, = 1). Whileinfinite-variancefor log returns, percentage

returns have finite mean and variance under the log-stable specification.

One can also combine Lévy processes, to nest alternative specifications within a broader
specification. Any linear combination w, k,(x) + w,k,(x) of Lévy densitiesfor w,, w, > 0 isaso
a valid Lévy density, and generates an associated weighted cumulant exponent of the form

w, fi(u) + w, f(u).

|.2 Time-changed L évy processes and stochastic volatility
Time-changed L évy processes generate stochastic volatility by randomizing time in equation (1).

Since the log transform (1) can be written as

In F(u) = £ (u)t
Ju® (12)
fu.(0)

for any finite-variance L évy process, randomizing timeisfundamentally equivalent to randomizing
variance. Astheconnection betweentimechangesand stochastic volatility becomeslesstransparent
once “leverage” effects are added, | will use a stochastic volatility (or stochastic intensity)

representation of stochastic processes.
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The leverage effect, or correlation between asset returns and conditional variance
innovations, is captured by directly specifying shocks common to both. This article will initially
assume that the log asset price s, = InS, follows a process of the form

ds, = (o + 1, V)t + (p,, (7, dW, - op’,V,dt) + (dL, - oV, d)

(13)
dv, = (@ -BV)dt + o,[V,dW,

The log increment ds, consists of the continuously-compounded return, plus increments to two
exponential martingales. dW, isaWiener increment, while dL, isaL évy increment independent
of dW,, with instantaneous variance (1 - pf,v) V.dt. Theterm wV,dt = Ee @i IS aconvexity
adjustment that converts dL, - o ¥, dt into an exponential martingale. Further refinementswill be

added below, to match properties of stock market returns more closely.

This specification has various features or implicit assumptions. First, the approach allows
considerable flexibility regarding the distribution of the instantaneous shock dL, to asset returns,
which can be Wiener, compound Poisson, or any other fat-tailed distribution. Three underlying
Lévy processes are considered:

1) asecond diffusion process W,, independent of W, [Heston (1993)];
2) finite-activity jumps drawn from anormal distribution or a mixture of normals; and
3) the generalized CGMY (2003) Lévy process from (8) above.

Combinations of these processes will also be considered, to nest the alternatives.

Second, the specification assumesasingleunderlying variancestatevariable 7, that follows
an affine diffusion, and which directly determines the variance of diffusion and jump components.
This approach generalizes the stochastic jump intensity model of Bates (2000, 2006) to arbitrary

Lévy processes.

Two alternate specificationsarenot considered, for different reasons. First, | do not consider
the approach of Li, Wells and Y u (2006), who model log-differenced asset prices as the sum of a
Heston (1993) stochastic volatility process and a constant-intensity fat-tailed Lévy process that
captures outliers. Bates (2006, Table 7) found the stochastic-intensity jump model fits S& P 500
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returns better than the constant-intensity specification, when jumps are drawn from afinite-activity
normal distribution or mixture of normals. Second, the diffusion assumption for ¥, rules out
volatility-jump models, such asthe exponential-jump model proposed by Duffie, Pan and Singleton
(2000) and estimated by Eraker, Johannes and Polson (2003). Such models do appear empirically
relevant, but the AML filtration methodology described below is not yet in aform appropriate for

such processes.

Define y,, . = f tT ds asthediscrete-timereturn observed over horizon t = T'-¢, and define
Ju@) = (1 - piv) V, g (u) asthe cumulant exponent of dL, - wV,dt. By construction, g, (u) is
a standardized cumulant exponent, with g, (1) = 0 and variance g/, (0) = 1. A key property of
affine modelsisthe ability to compute the conditional generalized Fourier transformof (y,,., V).

This can be done by iterated expectations, conditioning initially on the future variance path:

F(®, ¢ |V, ) = E(e¢y,+r+¢VT|Vt)

E{E[ @ pgt + ftTCI)((p.l - 1/zp:v)Vsd.s' + Payy/ VW, + (L, —stds)) + ¥y
= e

| {VS}LJ | V,}
(14)

E

Ok [+ 402@ - @)+ (1 - 0@ ds +w ¥y V}
t

Spyt + h(®) [Tv.ds + g,
Ele J ‘| Vt}

for h(®) = p, + %p2, (B - @) + (1 - p2,)g,(®). Thisisthegeneralized Fourier transform of the
future spot variance ¥, and the average future variance 7, , = % f tTVst- Thisis awell-known
problem (see, e.g., Bakshi and Madan (2000)), with an analytic solution if 7, follows an affine
process. For the affine diffusion above, F(¢|V,, t) solves the Feynman-Kac partial differential

eguation
-F_ + (@ -BV)F, + %0*V,F,, = -h(®)V,F (15)
subject to the boundary condition F(®, § | 7,,0) = exp(y¥,). Thesolutionis
F(®,¢|V,,7) = exp[C(z; B, ¢) + D(v; D, ) V] (16)

where
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C(t; ®, 9, &) = p,dt - %(pwocb—p—v)

. (17)
2% 01+ Y(py0®-p-y) 24| - 2% [l - K@)y ]
) Y o’
2(p, -%)® - &2
D(v; @, ¢, &) = %) e o % 18
p,o0® - p + y*E o
1-e¥"
Y = (6,00 - B - 20°h(®) (19
1: 2
) -
A@) - e'" -1 > (20)
e'™+1  B-po®
[eyt—l Y ]
K@) - o :
e+l L6 _ oo D)
e’"-1

Conditional varianceisnot theonly |atent state variabl e of relevanceto stock market returns.
It will be shown below that daily stock market returns were substantially autocorrelated over much
of the 20" century; and that the autocorrel ation was persistent and nonstationary. Consequently, it

isassumedthat daily log-differenced stock index excessreturns y, can bedescribed by thefollowing
stochastic process.

L+,
yt+1 = ptyt + ft dSt

Via =V, + [T, 22)
t
Pt = Py * Eups £y ~ N(O,0;) and iid.

where 1, isthe effective length of a business day,
p, isthe daily autocorrelation of stock index returns,

ds, isthe instantaneous intradaily underlying shock to log asset prices, and
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V.dt = Var,(ds,) istheinstantaneous conditional variance of ds, .
The intradaily shocks (ds,, dV,) are given by (13) above.

The model adds an autocorrelation state variable p, that captures the fact that
autocorrelations of stock market returns are not constant over time.®> Following the literature on
time-varying coefficient models, the autocorrelation is modeled as a simple random walk, to avoid
constraining estimates of p,. Estimation of the autocorrelation volatility parameter o,
endogenously determines the appropriate degree of smoothing to use when filtering the current

autocorrelation value p, from past data.

Furthermore, the length 1, of abusinessday isallowed to vary based upon various periodic
effects. In particular, day-of-the-week effects, weekends, and holidays are accommodated by
estimated time dummies that allow day-specific variation in t,. In addition, time dummies were
estimated for the Saturday morning trading availableover 1926-52, and for the Wednesday exchange
holidaysin the second half of 1968 that are the focus of French and Roll (1986).* Finally, the stock
market closings during the “Bank Holiday” of March 3-15,1933 and following the September 11,
2001 attacks were treated as % and 3—25-year returns, respectively. Treating the 1933 Bank
Holiday asa 12-day interval is particularly important, since the stock market rose 15.5% when the

market re-opened on March 15. September 17, 2001 saw a smaller movement, of -4.7%.

Given the above stochastic process, the cumulant generating function of future returns and

state variable realizations conditional upon current values is analytic, and of the semi-affine form

InF(®,E ¥ |y,p,,V,) = In

Vs P V,
=Ct;D,8¢) + (E+Dy)p, + D(x,; D, )V,

E[e ®y,,, + EP;+1 + PV,
(23)

where C(t;€,®@,¥) = C(1; @, §) + 1/20;2)52’ and

3See, eg., Andersen, Benzoni and Lund (2002, Table I), who estimate different
autocorrelations for 1953-96 and 1980-96.

“Gallant, Rossi and Tauchen (1992) use a similar approach, and also estimate monthly
seasonals.
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C(t; @, ¥) and D(t; @, §) aregivenin (17) and (18) above.

| .3 Filtration and maximum likelihood estimation

If the state variables (p,, V,) were observed along with returns, it would in principle be possible to
evaluatethejoint transition densities of the dataand the state variable evolution by Fourier inversion
of thejoint conditional characteristicfunction F(i®, i, iy | y,, p,, V,) , andtousethisinamaximum
likelihood procedure to estimate the parameters of the stochastic process. However, since (p,, V,)
are latent rather than directly observed, thisis a hidden Markov model that must be estimated by

other means.

Since the cumulant generating function (23) is affine in the latent state variables (p,, V,),
the hidden Markov model can befiltered and estimated using the approximate maximum likelihood
(AML) methodology of Bates (2006). The AML procedure is a filtration methodology that
recursively updates the conditional characteristic functions of the latent variables and future data
conditional upon the latest datum. Define ¥, = {y,, »,, ..., ,} asthe data observed up through
period t, and define

G, GE, i9) = Eje® |y (24)

as the joint conditional characteristic function that summarizes what is known at time t about
(p,» V,). The density of the observation y,,, conditional upon ¥, can be computed by Fourier

inversion of its conditional characteristic function:

1 (= . C(x,;i®,0,0) - i®y,,
p(yt+1 | Yt) = Ef_ Gt|t[q)yta D(Tt; lq)s 0) ] € @ ) ’ 'dd. (25)

Conversely, the joint conditional characteristic function G,., ,.,(i€, iy) needed for the next

observation can be updated given y,,, by the characteristic-function equivalent of Bayes' rule:

G

t|¢

Gorj o GE, 1) = [+ i®y,, D(v,; i®, iy)] e “@ ™5 1 40

1 fw
21'Ep(yt+1 | Yt) et



13

The agorithm begins with an initial joint characteristic function G1|1(-) and proceeds
recursively through the entire data set, generating thelog likelihood function X Inp(y,,,|¥,) used
in maximum likelihood estimation. Filtered estimates of the latent variables can be computed from

derivativesof thejoint conditional moment generating function, ascan higher conditional moments:

"G, s q:)‘

E[Pﬁl thl | Y,.,] = .
"IV |y

(27)

The above procedure, if implementable, would permit exact maximum likelihood function
estimation of parameters. However, the procedure would require storing and updating the entire
function Gt|t(-) based on point-by-point univariate numerical integrations. As such a procedure
would be slow, the AML methodology instead approximates Gt‘ () at each point in time by a
moment-matching joint characteristic function, and updates the approximation based upon updated
estimates of the moments of the latent variables. Given an approximate prior (?t| () and adatum
¥,.1» (27) is used to compute the posterior moments of (p,,,, ¥,,,), which are then used to create
an approximate Gt+1| ++1(). The overall procedure is analogous to the Kalman filtration procedure
of updating conditional meansand variances of latent variables based upon observed data, under the
assumption that those variables and the data have a conditional normal distribution. However, the
equations (26) and (27) identify the optimal nonlinear moment updating rules for a given prior
G, ("), whereas Kalman filtration useslinear rules. It will be shown below that thismodificationin
filtration rules isimportant when estimating latent autocorrelations and variances under fat-tailed
Lévy processes. Furthermore, Bates (2006) proves that the iterative AML filtration is numerically
stable, and shows that it performs well in estimating parameters and latent variable realizations.

Autocorrelations can be negative or positive, while conditional variance must be positive.
Consequently, different two-parameter distributions were used for the conditional distributions of
the two latent variables: Gaussian for autocorrelations, gamma for variances. Furthermore, since
volatility estimatesmean-revert within monthswhereasautocorrel ation estimatesevolve over years,
realizationsof thetwo latent variableswere assumed conditional ly independent. These assumptions

resulted in an approximate conditional characteristic function of the form
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InG,,E ¥) = [p,& + %W, E] - vIn(l - x,¥). (28)

The following summarizes key features of joint conditional distributions of the latent variables.

Autocorrelation p, spot variance V,
Distribution P Y, ~ N,y Wy V.Y, ~ t|t, P,
conditional nEe™ |V, = b, E+% W, 8 Ee"|¥,]= —v,In(l ~x¥)
cumulant kv, = P8 v, P
generating function tle ™t Ve S
2

initial CGF 0,17, ~ N0, 10) K =2,y = 2%

2B o’

p,, V, | ¥, assumed independent for all t.

Initial variance was assumed drawn from its unconditional gamma distribution, with the
parameters (x,,v,) given above. Since autocorrelations were assumed nonstationary, no
unconditional distribution exists. Consequently, the AML algorithmwasinitiated using arelatively
diffuse conditional distribution for the initial autocorrelation — one much wider than the plausible
(-1, +1) range.

Theparameters 6, = (p,,, W,; ¥, v,) —or, equivaently themoments (p, ,, 7,

t|t’ Vt|t’ t|t)
— summarize what is known about the Iatent variables. These were updated daily using the latest

t|t’

observation y,,; and equations (26) - (27). For each day, 5 univariate integrations were required:
1for thedensity evaluationin(26), and 4 for themean and varianceevaluationsin (27). Anupper @ .
was computed for each integral which upper truncation error would belessthan 1071 in magnitude.
The integrands were then integrated over (-® .., ® . ) to a relative accuracy of 107, using

IMSL’s adaptive Gauss-Legendre quadrature routine DQDAG and exploiting the fact that the
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integrandsfor negative® arethe complex conjugates of theintegrands eval uated at positive @. On
average between 234 and 448 evaluations of the integrand were required for each integration.®

Il. Propertiesof U.S. stock market returns, 1926 - 2006

1.1 Data

Thedatausedinthisstudy aredaily cum-dividend excessreturnson the CRSP value-weighted index
over January 2, 1926 through December 29, 2006; a total of 20,919 excess returns. The CRSP
value-weighted returns are very similar to returns on the (value-weighted) S& P Composite Index,
which began in 1928 with 90 stocks and was expanded on March 1, 1957 to its current 500-stock
structure. Indeed, the correlation between the CRSP value-weighted returns and S& P 500 returns
was .9987 over 1957-2006. The CRSP series was preferred to S& P data partly because it begins
twoyearsearlier, but a so becausethe S& P Composite Index isonly reported to two decimal places,
which creates significant rounding error issues for the low index values observed in the 1930’s.
CRSP daily returns for each month were converted to daily log excess returns using |bbotson and

Associates data on monthly Treasury bill returns, and the formula

In(1+i
y, = (4R - 20D, 29)

where R, isthe daily CRSP cum-dividend return;

i isthat month’sreturn on Treasury bills of at least 1 month to maturity;

N is the number of calendar days spanned by the monthly Treasury bill return; and

n, isthe number of calendar days spanned by the “daily” return R, .
The monthly interest rate data were downloaded from Ken French’s Web site, and extended
backwards through 1926 using data in Ibbotson and Associates SBBI Yearbook.

°By contrast, the FFT approach used in Carr et a (2002) requires 16,384 functional
evaluations.
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I1.2 Parameter estimates

Table | describes and provides estimates of the time dummies from the time-changed CGMY
model,® with Wednesday returns (Tuesday close to Wednesday close) arbitrarily selected as the
benchmark day. Daily variance tended to be highest at the beginning of the week and decline
thereafter, but day-of-the-week effects do not appear to be especially pronounced. The major
exception is the Saturday morning (10 AM to noon) trading generally available over 1926-52."
Saturdayswere effectively 43% aslong asthe typical Wednesday. Total weekend variance (Friday
close to Monday close) was (.43 + 1.05) / 1.10 - 1 = 34.5% higher when Saturday trading was
available (over 1926-52) than when it was not (primarily over 1945-2006).% Thisis qualitatively
similar to but less pronounced than the doubling of weekend variance found by Barclay,
Litzenberger and Warner (1990) in Japanese marketswhen Saturday half-day trading was permitted.

Barclay et a lucidly discuss market microstructure explanations for the increase in variance.

Holidays also did not have a strong impact on the effective length of abusiness day —with
the exception of holiday weekends spanning 4 calendar days. Consistent with French and Roall
(1986), 2-day returns spanning the Wednesday exchange holidays in 1968 (Tuesday close to
Thursday close) had avariancenot statistically different fromatypical 1-day Wednesday return, but
substantially lessthan the 1 + .94 = 1.94 two-day variance observed for returns from Tuesday close
to Thursday closein other years. Overall, thecommon practice of ignoring day-of-the-week effects,
weekends, and holidays when analyzing the time series properties of daily stock market returns

appears to be a reasonable approximation, provided the data exclude Saturday trading.

Table Il reports estimates for various models, while Figure 1 presents associated normal

probability plots. As noted above, all models capture the leverage effect by a correlation p_, with

®Estimatesfrom other specificationswerevirtually identical, with estimatestypically within
+0.01 of the CGMY model’ s estimates.

"Saturday trading was standard before 1945. Over 1945-51, it was eliminated in summer
months, and was permanently eliminated on June 1, 1952.

8A s the time dummy estimates are estimated jointly with the volatility and autocorrelation
filtrations, the estimates of weekend variances with versuswithout Saturday trading control for any
divergencesin volatility and autocorrelation levels in the two samples,
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the diffusion shock to conditional variance. The modelsdivergein their specifications of the Lévy
shocks dL, orthogonal to the variance innovation. The first two models (SVJ1, SVJ2) have a
diffusion for small asset return shocks, plus finite-activity normally-distributed jumps to capture
outliers. The other models examine the generalized time-changed CGMY model, along with

specific parameter restrictions or relaxations.

The SVJ1 and SV J2 results largely replicate the results in Bates (2006). The SV J1 model
has symmetric normally-distributed jumps with standard deviation 3% and time-varying jump
intensities that occur on average A, (a/B) = 3.2 jumps per year. Asshown in Figure 1, this jump
risk assessment fails to capture the substantial 1987 crash. By contrast, the SVJ2 model adds a
second jump component that directly captures the 1987 outlier. The resulting increase in log
likelihood from 75,044.60 to 75,049.07 is statistically significant under alikelihood ratio test, with

amarginal significance level of 3.0%.

The various CGMY models primarily diverge across the specification of the Y.Y,
parameters — whether they are set to specific levels, and whether they diverge for the intensities of
positiveversusnegativejumps. The DEXP model with Y, =Y, =-1 isconceptually similar tothe
jump-diffusion model SV J1, but uses instead a finite-activity double exponential distribution for
jumps. Despite the fatter-tailed specification, Figure 1 indicates the DEXP model has difficulties
comparable to SV J1 in capturing the *87 crash. The VG model replaces the finite-activity double
exponential distribution with the infinite-activity variance process (Yp =Y, =0), and does
marginally better infit. Both modelsinclude adiffusion component, which captures 73-74% of the

variance of the orthogonal Lévy shock dL, .

Models Y, YY, YY_J, and LS involve pure-jump specifications for the orthogonal Lévy
process L,, without a diffusion component. Overal, higher values of Y fit the data better —
especially the 1987 crash, which ceases to be an outlier under these specifications. Relaxing the
restriction Yp = Y leadsto someimprovement infit, withtheincreaseinlog likelihood (Y'Y versus
Y) having a P-value of 1.8%. Point estimates of the jump parameters (w,, G, Y,) governing
downward jump intensitiesdivergesharply fromthe parameters (1 - w,, M, Yp) governing upward

jump intensities when the Y, =7, restriction is relaxed, although standard errors are large. The
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dampening coefficient G is not significantly different from zero, implying one cannot reject the
hypothesis that the downward-jump intensity isfrom a stochastic-intensity version of the Carr-Wu
(2003) log-stable process.® By contrast, the upward intensity is estimated as afinite-activity jump
process —which, however, still overestimates the frequency of big positive outliers (Figure 1, sixth

panel).

Motivated by option pricing issues, Carr and Wu (2003) advocate using a log-stable
distribution with purely downward jumps. An approximation to this model generated by setting
G =.001 and w, = 1 fitsstock market returnsvery badly. The basic problemisthat whilethe LS
model does allow positive asset returns, it severely underestimates the frequency of large positive
returns. Thisleadsto abad fit for theupper tail (Figure 1, last panel). Furthermore, it will be shown
below that volatility and autocorrelation estimates are adversely effected following large positive
returns by the model’s assumption that such returns are unlikely. However, the YY estimates
indicate that the Carr-Wu specification can be auseful component of amodel, provided the upward
jump intensity function is modeled separately.

Some nested models were also estimated, to examine the sensitivity of the YY model to
specific features of the data. For instance, unrestricted CGMY models generate at least one Y
parameter in the infinite-activity, infinite-variation range [1, 2], and typically near the diffusion
value of 2. This suggeststhat the models may be trying to capture considerable near-zero activity.
However, adding an additional diffusion component to thetime-changed Y'Y L évy specification to
capture that activity separately (model YY_D) led to no improvement in fit. Similarly, the
possibility that YY estimates might be affected substantially by the extreme 1987 crash was tested
by adding an independent finite-activity normally-distributed jJump component capable (asin the
SVJ2 model) of capturing that outlier. The resulting fit (model YY_J) was not a statistically

significant improvement over the YY model.

*This was also tested by imposing G = .001in the YY model and optimizing over other
parameters. The resulting log likelihood was 75,052.72, insignificantly different from the
unconstrained 75,052.90. While setting G to zero was not permitted, given the assumption of finite
variance, avalueof G = .001 implies negligible exponential dampening of the intensity function
(8) over the [-.20, O] observed range of negative log stock market excess returns, and is therefore
observationally equivalent to the log stable specification.
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Apart from the LS model, all models have similar estimates for the parameters determining
the conditional mean and stochastic variance evolution. The parameter ., is not significantly
different from zero, indicating no evidence over 1926-2006 that the equity premium depended upon
thelevel of conditional variance. Latent variance mean-revertstowards an estimated average level
(.143)? - (.159)?, with ahalf-life about 2 months, and avolatility of variance estimate at about .36.
The half-life estimates are similar to those in Bates (2006, Table 8) for excess stock market returns
over 1953-1996. However, thelevel and volatility of variance are higher than the 1953-96 estimates
of (.130)? and .25, respectively. The divergenceis almost assuredly attributable to differencesin
data sets— in particular, to the inclusion of the turbulent 1930's in this study.

Overall, Figure 1 suggests the differences across the alternate fat-tailed specifications are
relatively minor. ThemodelsSV J1, DEXP, VG, and L Sappear somewhat lessdesirable, giventheir
failure to capture the largest outliers. However, the SVJ2, Y, and Y'Y specifications appear to fit
about the same. Furthermore, all models appear to have some specification error (deviations from
linearity) inthe ze[-2.5, -1.5] range and in the upper tail (z>2). The sources of specification
error are not immediately apparent. One possibility isthat the jump intensity functions &(x) aretoo
tightly parameterized, given the large amount of data. Another explanation is the data generating
process may have changed over time, and that datafrom the 1930's and 1940's have little relevance
for stock market risk today. Some support for this latter explanation is provided by Bates (2006,
Figure 3), who finds|ess evidence of specification error for models estimated over 1953-96. These

alternate possibilities will be explored further in future versions of this paper.

I1.3 Autocorrelation estimates

That stock indexes do not follow a random walk was recognized explicitly by Lo and MacKinlay
(1988), and implicitly by various earlier practices in variance and covariance estimation designed
to copewith autocorrelated returns; e.g., Dimson (1979)’ slead/l ag approach to betaestimation. The
positiveautocorrel ationstypically estimated for stock index returnsarecommonly attributed to stale
pricesin the stocks underlying theindex. A standard practiceintime seriesanalysisisto pre-filter
the data by fitting an ARMA specification; see, e.g., Jukivuolle (1995). Andersen, Benzoni and
Lund (2002), for instance, useasimple MA (1) specification to remove autocorrelationsin S& P 500
returns over 1953-96; a data set subsequently used by Bates (2006).
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The approach of prefiltering the data was considered unappealing in this study, for several
reasons. First, the 1926-2006 interval used here islong, with considerable variation over timein
market trading activity and transactions costs, and structural shiftsin the datagenerating processare
probable. Indeed, Andersen et a (2002, Table 1) find autocorrel ation estimatesfromtheir full 1953-
96 sample diverge from estimates for a 1980-96 subsample. Second, ARMA packages use amean
squared error criterion that is not robust to the fat tails observed in stock market returns.
Consequently, autocorrel ations were treated as an additional latent variable, to be estimated jointly

with the time series model (22).

Given that the prior distribution p, | ¥, is assumed N(p,,, W, ), it can be shown that the

autocorrelation filtration algorithm (27) updates conditional moments as follows:

onp(y,,,|Y,)

ﬁ+1 +1=f) _yW (30)
t+1|¢t t|t t"" ¢t ayt+1
*np(y,,1Y,)
2 +1
VVt+1|t+1 =0y 7 (ytVVt|t)2 ; t (31)
ayt+1

If y,,,|¥, were conditionally normal, the log density would be quadraticin y,,,, and (30) would
be the linear updating of Kalman filtration. More generally, the conditionally fat-tailed properties
of y,,, areexplicitly recognized in the filtration.** The partials of log densities can be computed

numerically by Fourier inversion.

Figure 2 illustrates the autocorrelation filtrations estimated under various models. The
autocorrelation revision is fairly similar to a Kalman-filtration approach for observations within a
+2% range — which captures most observations, given a unconditional daily standard deviation
around 1%. However, the optimal filtration for fat-tailed distributions is to downweight the
information from returns larger than 2% in magnitude. The exception is the Carr-Wu log-stable

specification (LS). Sincethat model assumesreturns have afat lower tail but not aparticularly fat

Similar equations were derived by Masreliez (1975), while the overall moment-matching
filtration methodology has been termed “robust Kalman filtration.” See Schick and Mitter (1994)
for aliterature review.
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upper tail, its optimal filtration downweights the information in large negative returns but not in

large positive returns.

Figure 3 presentsfiltered estimates of the daily autocorrelation fromthe Y'Y model, and the
divergences from those estimates for other models. The most striking result is the extraordinarily
pronounced increase in autocorrel ation estimates from 1941 - 1971, with apeak of 35% reached in
June 1971. Estimatesfrom other model sgive comparabl eresults, asdo crude sampleautocorrel ation
estimatesusing a 1- or 2-year moving window.™ After 1971, autocorrel ation estimatesfel | steadily,

and became insignificantly different from zero after 2002.

The reasons for the evolution in autocorrelations are unclear. Changes in trading volume
would seem the most plausible explanation, given the standard stale-price explanation. However,
Gallant, Rossi and Tauchen (1992, Figure 2) find that volume trended downward over 1928-43, but
generally increased throughout 1943-87. LeBaron (1992) finds that autocorrelations and stock
market volatility are inversely related; asis also apparent from comparing Figure 3 with Figure 5
below. Goyenko, Subrahmanyam, and Ukhov (2008, Figures 1-2) find shiftsin their measures of
bond market illiquidity over 1962-2006 that parallel the stock market autocorrelation estimates,*

suggesting the evolution involves a broader issue of overal liquidity in financial markets.

Figure 3 adso illustrates that the estimates of the daily autocorrelation are virtually
nonstationary, indicating that fiting ARMA processes with time-invariant parameters to stock
market excess returns is fundamentally pointless. The conditional standard deviation asymptotes

at about 4%%, implying a 95% confidence interval of £9% for the autocorrel ation estimates.

1.4 Volatility filtration
Figure 4 illustrates how the estimated conditional volatility E,,,,/V,,, is updated for the various

models. Theconditional volatility revisionsusemedian parameter values (x,, v,) = (.00295, 5.85)

H"See LeBaron (1992, Figure 1) for annua estimates of the daily autocorrelation of S& P
composite index returns over 1928-1990.

12| am indebted to Ruslan Goyenko for pointing this out.
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for the prior gammadistribution of 7, implying aconditional mean v, = (.131 )? that iscloseto
the (.129)* median value observed for Vt| , estimatesfromthe Y'Y model."® For comparability with
GARCH analyses such as Hentschel (1995), Figure 4 shows the “news impact curve,” or revision
in conditional volatility estimates upon observing agiven excess return, using the methodol ogy of

Bates (2006, pp.931-2).

All newsimpact curves aretilted, with negative returns having alarger impact on volatility
assessmentsthan positivereturns. Thisreflectstheleverageeffect, or estimated negative correlation
between asset returnsand volatility shocks. All models processtheinformationin small-magnitude
asset returnssimilarly. Furthermore, almost all model struncate the information from returnslarger
than 3 standard deviations. This was also found in Bates (2006, Figure 1) for the SVJ1 model,
indicating such truncation appears to be generally optimal for arbitrary fat-tailed Lévy processes.
The LS exception supportsthisrule. The LS model has afat lower tail but not afat upper tail, and
truncates the volatility impact of large negative returns but not of large positive returns. The fact
that volatility revisions are not monotonic in the magnitude of asset returns is perhaps the greatest
divergence of these models from GARCH models, which amost invariably specify a monotonic
relationship.’* However, since movesin excess of +3 standard deviations are rare, both approaches

will generate similar volatility estimates most of the time.

Figure5 presentsthefiltered estimates of conditional annualized volatility over 1926-2006
fromthe Y'Y model, the associated conditional standard deviation, and the deviationsfromtheYY

estimates for other models.”> Volatility estimates from all models except LS are similar — as,

“As I7t| ; estimates have substantial positive skewness, the median is substantially below the
mean estimate of (.159)? reported in Table 2.

A n exceptionisMaheu and M cCurdy (2004), who put ajumpindicator sensitiveto outliers
intoaGARCH model. They find that the sensitivity of variance updating to thelatest squared return
should be reduced for outliers, for both stock and stock index returns.

™ Annualized” volatility refersto the choice of units. Sincetimeis measured inyears, 7,
isvariance per year, and thedaily volatility estimate of areturn over atypical businessday of length
1/252 yearsisapproximately E,,/V,/252. Sincevariance mean-revertswith an estimated half-life
of roughly 2 months, it isnot appropriateto interpret Figure 5 as showing the volatility estimate for
a 1-year investment horizon.
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indeed, is to be expected from the similar volatility updating rules in Figure 4. The conditional
standard deviation is about 2.8%, indicating a 95% confidence interval of roughly +4.6% in the
annualized volatility estimates. Because of the 81-year time scale, the graph actually shows the
longer-term volatility dynamics not captured by the model, as opposed to the intra-year volatility
mean reversion with 2-month half-lifethat is captured by themodel. Most strikingis, of course, the
turbulent market conditions of the 1930's, unmatched by any comparablevolatility in the post-1945
era. The graph indicates the 1-factor stochastic variance model is too simple, and suggests that

multifactor specifications of variance evolution are worth exploring.*®

I1.5 Unconditional distributions

A final diagnostic of model specification is the models ability or inability to match the
unconditional distribution of returns—in particular, thetail propertiesof unconditional distributions.
Mandelbrot (1963, 2004), for instance, argues that empirical tails satisfy a “power law”: tail
probabilities plotted against absolute returns approach a straight line when plotted on a log-log
graph. Thisempirical regularity underliesMandelbrot’ sadvocacy of the stable Paretian distribution,
which possesses this property and is nested within the CGMY model forG = M = 0.

Mandelbrot’ sargument ispremised uponi.i.d. returns, but theargument canin principlebeextended
to time-changed Lévy processes. Conditional Lévy densities time-average; if the conditional
intensity of moves of sizexis V, k(x) , the unconditional frequency of movesof sizexis E(V,) k(x).
Since unconditional probability density functions asymptotically approach the unconditional Lévy
densitiesfor large |x| , while unconditional tail probabilities approach the corresponding integrals

of the unconditional Lévy densities, examining unconditional distributions may still be useful.

Figures6aprovides model -specific estimatesof unconditional probability density functionsof stock
market excessreturn residuals, aswell as data-based estimatesfrom ahistogram. Given the day-of-
the-week effects reported in Table 1, the unconditional density functions are a horizon-dependent

mixture of densities, with mixing weights set equal to the empirical frequencies. The substantial

*Theinadequacies of AR(1) representations of conditional variance are already reasonably
well-known in volatility research, and have also motivated research into |ong-memory processes.
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impact of the 1987 crash outlier upon parameter estimatesisapparent. The SV J2 estimatestreat that
observation asauniqueoutlier, whilethe CGMY class of models progressively fatten thelower tail
as greater flexibility is permitted for the lower tail parameter Y,. As noted above, the lower tail
approaches the Carr-Wu (2003) log-stable (LS) estimate. However, the LS model is unable to
capture the frequency of large positive outliers. All models closely match the empirical
unconditional density function in the £3% range where most observations occur; and al models

underestimate the frequency of moves of 3% - 7% in magnitude.

Figure 6b provides similar estimates for unconditional lower and upper tail probabilities. In
addition, 1000 sample pathsof stock market excessreturn residualsover 1926-2006 were simulated
viaaMonte Carlo procedureusing Y'Y parameter estimates, in order to provide confidenceintervals
on tail probability estimates.” Unsurprisingly, the confidence intervals on extreme tail events are
guitewide. However, the underestimation of movesof 3% - 7% in magnitudeisagain apparent, and
is statistically significant. Thus, the best-fitting YY model fails to capture important features of
stock market excessreturns. Given that the normal probability plotsin Figure 1 indicate the models
are capturing conditional distributionsreasonably well, it seemslikely that model errorsareentering
via the distributional randomization involved when going from conditional to unconditional
distributions; parameter instability, for instance, or misspecification of the variance process. In
particular, | suspect that the 1-factor diffusive variance processin equation (13) isfailing to capture
the actual distribution of variance realizations, leading to more 3-7% moves than predicted by the
model.

Figure 7 plots model-specific tail probability estimates for the YY model on the log-log scales
advocated by Mandelbrot, along with data-specific quantilesfor 20,004 stock market residual s that
have roughly a 1-day estimated time horizon (x25%). The lower tail probability does indeed

converge to the unconditional tail intensity

Conditional variance sample paths were simulated using the approach of Bates (2006,
Appendix A.6), while Lévy shocks conditional upon intradaily average variance and data-based
daily time horizons were generated via an inverse CDF methodology. The two observations
corresponding to the market closings in 1933 and 2001 were omitted.
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C,G "T(-Y,,G|y|)

Y, (46)
C, —yy for G = 0

n

K(y) = [ ko

R

where C, = w, (1 - pfv) Ta/[pTQ2 - Yn)GY"'Z] and I'(q, z) isthe incomplete gamma function.
Furthermore, given G estimates near 0, K{( y) isroughly apower function, implying near linearity

when plotted on alog-log scale.

However, thegraphindicatesthat the convergenceof tail probabilitiestothetail intensity X( y)
occursonly for observationsin excess of 5% in magnitude—roughly 5 standard deviations. Asthis
is outside the range of almost all data, it does not appear that log-log scales provide a useful
diagnostic of model specification and tail properties. This is partly due to stochastic volatility,
which significantly slows the asymptotic convergence of unconditional tail probabilitiesto K( y)
for large |y|. Absent stochastic volatility (o = 0), the tail probabilities of ani.i.d. YY Lévy

process converge to K( y) for observations roughly in excess of 3% in magnitude.

No power law propertiesare observed for upper tail probabilities, given substantial estimated
exponential dampening. The failure of both lower and upper unconditional tail probabilities to

capturethefrequency of movesof 3-7% in magnitudeisagain apparent, and statistically significant.

[11. Summary and Conclusions

Thispaper providesestimatesof thetime-changed CGMY (2003) L évy process, and comparesthem
to the time-changed finite-activity jump-diffusions previously considered by Bates 2006). Overall,
both models fit stock market excess returns over 1926-2006 similarly. However, the CGMY
approach is slightly more parsimonious, and is able to capture the 1987 crash without resorting to
the“unique outlier” approach of the SVJ2 model. The CGMY model achievesthiswith a(dlightly)
dampened power law specification for negative jump intensities that is observationally equivalent
to atime-changed Carr-Wu (2003) infinite-variance log-stable specification. However, the time-
changed log-stable model is found to be incapable of capturing the substantial positive jumps aso

observed in stock market returns, which the more general time-changed CGMY model handles
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better. All modelsstill exhibit some conditional and unconditional specification error, the sources

of which have not yet been fully established.

The paper also documents some structural shifts over time in the data generating process.
Most striking is the apparently nonstationary evolution of the first-order autocorrelation of daily
stock market returns, which rose from near-zero in the 1930'sto 35%in 1971, before drifting down
againto near-zerovaluesafter 2002. Longer-termtrendsinvolatility arealso apparentinthefiltered
estimates, suggesting aneed for multifactor models of conditional variance. Whether there appear
to be structural shiftsin the parameters governing the distribution of extreme stock market returns

will be examined in future versions of this paper.

Finally, it isimportant when estimating latent state variablesto usefiltration methodol ogies
that are robust to the fat-tailed properties of stock market returns. Standard GARCH models lack
this robustness, and generate excessively large estimates of conditional variance after large stock

market movements.
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Table1l Effectivelength of timeintervalsover 1926-2006, relative to 1-day Wednesday returns

#days Description NOBS estimate std. error
1 Monday close - Tuesday close 3831 1.02 (.04)
1 Tuesday close - Wednesday close 4037 1
1 Wednesday - Thursday 3998 94 (.03)
1 Thursday - Friday 3924 .93 (.03)
1 Friday - Saturday (1926-52) 1141 43 (.02
2 Saturday close -~ Monday close (1926-52) 1120 1.05 (.05)
2 Weekday holiday 341 1.25 (.12)
2 Wednesday exchange holiday in 1968 22 73 (.33)
3 Weekend and/or holiday?® 2755 1.10 (.04)
4 Holiday weekend 343 1.58 (.14)
5 Holiday weekend 6 131 (1.00)

21518

4 ncludes one weekday holiday (August 14 - 17, 1945)



Table2: Parameter estimatesfor various models. Standard errorsin parentheses

Conditional mean Stochastic volatility

Model
Ho My 6 1252 o B Y Py v HL
(V252 e (mths)
Sval .040 (.015) .94 (.91) .030 (.006) .104 (.007) 433(.40) .370(.011) -.642(.020) .155(.005) 1.9(.2
SVJ2 .042 (.015) .87 (.92 .030 (.007) .105 (.008) 434 (37) .371(.011) -.642(.020) .155(.005) 1.9(.2
DEXP .044 (.015) .79 (.92) .030 (.006) .104 (.008) 4.25(.40) .370(.012) -.588(.020) .156 (.005) 20(.2
VG .042 (.015) 91 (.91) .030 (.006) .103 (.008) 4.25(.39) .368(.012) -.587(.020) .156 (.005) 20(.2)
Y .042 (.015) 91 (.92) .030 (.006) .096 (.011) 390(.38) .350(.019) -.577(.032) .157(.008) 21(.2)
YY .042 (.015) .87 (.91) .030 (.006) 101 (.011) 4.00(.38) .362(.019) -.572(.031) .159 (.008) 21(.2)
YY_ D .042 (.015) .87 (.91) .030 (.006) 101 (.013) 4.01(.38) .363(.021) -.572(.036) .159 (.010) 21(.2
YY J .041 (.015) .97 (.92) .030 (.007) .095 (.008) 399(.38) .350(.012) -.586(.020) .154 (.005) 21(.2)
LS .019 (.015) 1.71 (.78) .031 (.007) 123 (.009) 452(.39) .405(.011) -.554(.020) .165 (.005) 1.8(.2)
jump parameters
fjump w, G M Yn Yp A',- ? 5 InL
Sval .140 (.015) 152.4 (24.8)  .000(.002) .030(.002) 75,044.60
SVJ2 156 (.022) 162.8(29.3)  .000 (.000) .029 (.003)  75,049.07
05 (0.7) -.189(.083) .005 (.028)
DEXP .256 (.030) 49(.07) 66.1(6.00 45.4(10.1) -1 75,047.62
VG 274 (.030) 52(.07) 41.1(54) 316 (9.1) 0 75,049.48
Y 1 .59 (.06) 7.0(4.5) 23 (7.2 1.87 (.03) 75,050.12
YY 1 .88 (.03) 16(4.2 401(31.00 1.93(.01) -.24(1.34 75,052.90
YY D .894(1.82) .86 (.29) 16(65 41.2(31.6) 1.92(.24) -.30(1.39 75,052.90
YY_ J 1 .87 (.02 6.3(56.3) 395(154) 194(.01) -.21 (.74 5.2(2.6) -.061(.005) .000(1.48) 75,054.94
LS 1 1 .001 1.97 (.00) 75,005.53

Data: daily CRSP value-weighted excess returns, 1926-2006. See equations (6) - (10), (13), and (22) for definitions of parameters.
Models with fjump < 1combine Lévy jump processes with an additional independent diffusion, with variance proportions ( fjump ,1 - j;.ump ), respectively.
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Figure2: Autocorrelation revision p,; .., - P, conditional on observing y,,;, and
conditional on y, = 1%

With y, = +1% With y, = -1%
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Figure 3: Autocorrelation estimates p,, from Y'Y model, conditional standard deviations,
and autocorrelation estimates divergencesfrom YY estimatesfor other models
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Figure4: Newsimpact curvesfor various models
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Figure 5: Volatility estimates (YY model), associated conditional standard deviations, and
deviationsfrom Y'Y estimatesfor other models
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Figure 6a. Unconditional probability density function estimates from various models, and direct
data-based estimates from a histogram (.25% cell width).
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Figure 6b. Unconditional tail probability estimates. The dotted lines give 95% confidence
intervals, based upon 1000 simulations of the 1926-2006 data set under Y'Y parameter estimates.
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Figure7. Unconditional tail probabilities and tail intensity functions versus | y|; log scales on both axes. Data-based estimates from
excess returns' residuals for 20,004 business days with estimated time horizons of approximately 1 day (£25%). Dotted lines give 95%
confidence interval's, based upon 1000 simulated sample paths under YY parameter estimates.
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